125 research outputs found

    Cascaded Entanglement Enhancement

    Full text link
    We present a cascaded system consisting of three non-degenerate optical parametric amplifiers (NOPAs) for the generation and the enhancement of quantum entanglement of continuous variables. The entanglement of optical fields produced by the first NOPA is successively enhanced by the second and the third NOPAs from -5.3 dBdB to -8.1 dBdB below the quantum noise limit. The dependence of the enhanced entanglement on the physical parameters of the NOPAs and the reachable entanglement limitation for a given cascaded NOPA system are calculated. The calculation results are in good agreement with the experimental measurements.Comment: 5 pages, 4 figure

    Robust image steganography against lossy JPEG compression based on embedding domain selection and adaptive error correction

    Full text link
    Transmitting images for communication on social networks has become routine, which is helpful for covert communication. The traditional steganography algorithm is unable to successfully convey secret information since the social network channel will perform lossy operations on images, such as JPEG compression. Previous studies tried to solve this problem by enhancing the robustness or making the cover adapt to the channel processing. In this study, we proposed a robust image steganography method against lossy JPEG compression based on embedding domain selection and adaptive error correction. To improve anti-steganalysis performance, the embedding domain is selected adaptively. To increase robustness and lessen the impact on anti-steganalysis performance, the error correction capacity of the error correction code is adaptively adjusted to eliminate redundancy. The experimental results show that the proposed method achieves better anti-steganalysis and robustness

    Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths

    Full text link
    Multi-color entangled states of light including low-loss optical fiber transmission and atomic resonance frequencies are essential resources for future quantum information network. We present the experimental achievement on the three-color entanglement generation at 852 nm, 1550 nm and 1440 nm wavelengths for optical continuous variables. The entanglement generation system consists of two cascaded non-degenerated optical parametric oscillators (NOPOs). The flexible selectivity of nonlinear crystals in the two NOPOs and the tunable property of NOPO provide large freedom for the frequency selection of three entangled optical beams, so the present system is possible to be developed as practical devices used for quantum information networks with atomic storage units and long fiber transmission lines.Comment: 4pages, 4 figure

    Variation in Bacterial Community Structure Under Long-Term Fertilization, Tillage, and Cover Cropping in Continuous Cotton Production

    Get PDF
    Agricultural practices alter the structure and functions of soil microbial community. However, few studies have documented the alterations of bacterial communities in soils under long-term conservation management practices for continuous crop production. In this study, we evaluated soil bacterial diversity using 16S rRNA gene sequencing and soil physical and chemical properties within 12 combinations of inorganic N fertilization, cover cropping, and tillage throughout a cotton production cycle. Soil was collected from field plots of the West Tennessee Agriculture Research and Education Center in Jackson, TN, United States. The site has been under continuous cotton production for 38 years. A total of 38,038 OTUs were detected across 171 soil samples. The dominant bacterial phyla were Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia, and Chloroflexi, accounting for ~70% of the total bacterial community membership. Conventional tillage increased alpha diversity in soil samples collected in different stages of cotton production. The effects of inorganic N fertilization and conventional tillage on the structure of bacterial communities were significant at all four sampling dates (p \u3c 0.01). However, cover cropping (p \u3c 0.05) and soil moisture content (p \u3c 0.05) only showed significant influence on the bacterial community structure after burn-down of the cover crops and before planting of cotton (May). Nitrate-N appeared to have a significant effect on the structure of bacterial communities after inorganic fertilization and at the peak of cotton growth (p \u3c 0.01). Structural equation modeling revealed that the relative abundances of denitrifying and nitrifying bacteria were higher when conventional tillage and vetch cover crop practices were applied, respectively. Our results indicate that long-term tillage and fertilization are key factors increasing the diversity and restructuring the composition of bacterial communities, whereas cover cropping may have shorterterm effects on soil bacteria community structure. In this study, management practices might positively influence relative abundances of bacterial functional groups associated with N cycling. The bacteria functional groups may build a network for providing N and meet microbial N needs in the long term

    Experimental Demonstration of Quantum Entanglement Between Frequency-Nondegenerate Optical Twin Beams

    Full text link
    The quantum entanglement of amplitude and phase quadratures between two intense optical beams with the total intensity of 22mW and the frequency difference of 1nm, which are produced from an optical parametric oscillator operating above threshold, is experimentally demonstrated with two sets of unbalanced Mach-Zehnder interferometers. The measured quantum correlations of intensity and phase are in reasonable agreement with the results calculated based on a semi-classical analysis of the noise characteristics given by C. Fabre et al.Comment: Accepted in Opt. Let

    Improved Electrochemical Performance of Surface Coated LiNi0.80Co0.15Al0.05O2 With Polypyrrole

    Get PDF
    Nickel-rich ternary layered oxide (LiNi0.80Co0.15Al0.05O2, LNCA) cathodes are favored in many fields such as electric vehicles due to its high specific capacity, low cost, and stable structure. However, LNCA cathode material still has the disadvantages of low initial coulombic efficiency, rate capability and poor cycle performance, which greatly restricts its commercial application. To overcome this barrier, a polypyrrole (PPy) layer with high electrical conductivity is designed to coat on the surface of LNCA cathode material. PPy coating layer on the surface of LNCA successfully is realized by means of liquid-phase chemical oxidation polymerization method, and which has been verified by the scanning electron microscopy (SEM), transmission electron microscope (TEM) and fourier transform infrared spectroscopy (FTIR). PPy-coated LNCA (PL-2) exhibits satisfactory electrochemical performances including high reversible capacity and excellent rate capability. Furthermore, the capability is superior to pristine LNCA. So, it provides a new structure of conductive polymer modified cathode materials with good property through a mild modification method

    Individual-based morphological brain network organization and its association with autistic symptoms in young children with autism spectrum disorder

    Get PDF
    Individual-based morphological brain networks built from T1-weighted magnetic resonance imaging (MRI) reflect synchronous maturation intensities between anatomical regions at the individual level. Autism spectrum disorder (ASD) is a socio-cognitive and neurodevelopmental disorder with high neuroanatomical heterogeneity, but the specific patterns of morphological networks in ASD remain largely unexplored at the individual level. In this study, individual-based morphological networks were constructed by using high-resolution structural MRI data from 40 young children with ASD (age range: 2-8 years) and 38 age-, gender-, and handedness-matched typically developing children (TDC). Measurements were recorded as threefold. Results showed that compared with TDC, young children with ASD exhibited lower values of small-worldness (i.e., sigma) of individual-level morphological brain networks, increased morphological connectivity in cortico-striatum-thalamic-cortical (CSTC) circuitry, and decreased morphological connectivity in the cortico-cortical network. In addition, morphological connectivity abnormalities can predict the severity of social communication deficits in young children with ASD, thus confirming an associational impact at the behavioral level. These findings suggest that the morphological brain network in the autistic developmental brain is inefficient in segregating and distributing information. The results also highlight the crucial role of abnormal morphological connectivity patterns in the socio-cognitive deficits of ASD and support the possible use of the aberrant developmental patterns of morphological brain networks in revealing new clinically-relevant biomarkers for ASD.China Postdoctoral Science Foundation, Grant/Award Number: 2019M660236; National Natural Science Foundation of China, Grant/Award Numbers: 61901129, 62036003, 81871432, U1808204; The Basque Foundation for Science and from Ministerio de Economia, Industria y Competitividad (Spain) and FEDER, Grant/Award Number: DPI2016-79874-R; the Fundamental Research Funds for the Central Universities, Grant/Award Numbers: 2672018ZYGX2018J079, ZYGX2019Z017; the Sichuan Science and Technology Program, Grant/Award Number: 2019YJ018
    • …
    corecore